
Depot: A Tool for Managing
Software Environments

Wallace Colyer & Walter Wong – Carnegie Mellon University

ABSTRACT

Depot is a software management tool which provides a simple, yet flexible,
mechanism for maintaining third party and locally developed software in large heterogeneous
computing environments. Depot integrates separately maintained software packages, known
as collections, into a common directory hierarchy consisting of a union of all the collections.
This common directory is defined as the software environment. A set of configuration
options manages interactions and intersections between collections in the environment.

Depot facilitates the introduction, update, and removal of collections in a software
environment. Custom environments and complete test environments can be easily created for
individual machines or for sets of machines. Collections with unexpected problems can
either be replaced with previous versions or removed. Individual collections or files can be
moved from remote filesystems to the local disks of workstations without the concern that
those files may become outdated. All this is achieved with minimal wasted disk space and
administrative overhead.

Introduction

The installation and maintenance of application
software on UNIX platforms has traditionally been a
difficult and time consuming process. Many
difficulties result from inadequate software release
and environment control tools. The situation is
aggravated by a complete lack of industry standards,
the common use of hard coded paths for file depen-
dencies, and unreasonable assumptions that many
software providers make of the installation environ-
ment.

The emergence and popularity of distributed
computing has compounded the management prob-
lem. A large heterogeneous environment, with
thousands of workstations and hundreds of software
packages, aggravates the existing problems and adds
new ones which must be overcome.

To properly manage a software environment
several issues must be resolved. An inventory must
be maintained containing the origin of all the com-
ponents of the environment. Software must be
thoroughly tested independently, as well as in the
destination environments. If a critical problem
escapes the testing process, the software environment
must be smoothly restorable to a previous working
state.

In a distributed software environment, there is a
need to distribute and install software on remote
machines with different architectures, customizations
and configurations. The procedures required must
minimize the workload of the system administrators.

Many solutions that manage a distributed
software environment often bring back load and
availability problems of timesharing systems by

increasing the dependence on centrally maintained
services. To prevent this, workstations should be
able to locally cache commonly used files, as well as
maintain a core set of functionality in case of server
or network failures.

A software release management system in com-
plex environments should handle the following
issues:
� Distribution
� Installation
� Customization
� Testing
� Removal and restoration

By segregating the environment into discrete
manageable objects, it is possible to address all of
these issues. These objects can then be layered to
create the user visible environment. Thus, the
environment can be looked at as either a whole or in
parts.

Motivation

In the past, the software maintainers of the
Andrew system installed software, following the
general UNIX philosophy, directly into the /usr/local
tree. As the number of applications multiplied, the
maintenance process became increasingly difficult.
For example, because no records were kept of the
files that were installed with a software package,
often outdated files were left in the system, wasting
valuable disk space.

Another problem occurred when two applica-
tions had files with the same name installed in the
same directory; the conflicting file would be
overwritten during the installation process. This
would lead to all sorts of subtle problems, especially

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 151



if the files were significantly different between the
two applications.

When our software manager began posting lists
of hundreds of files and asking if anyone knew
whether they still belonged in /usr/local, it became
apparent that we had a serious problem. We
identified four key components necessary to solving
this problem: independence, integration, mobility
and simplicity.
Independence

The problem of keeping track of software can
be solved by separating sets of related software into
independent directory hierarchies called collections.
The collection abstraction reduces the complexity of
the software environment by creating smaller, well
defined, working groups. Each collection is kept in
separate locations, so it is simple to determine the
origin of its files. This facilitates finding and report-
ing problems, as well as cleaning up the environ-
ment when updates occur or when the software
package becomes obsolete. Furthermore, a complete
software package can be distributed or shared by
simply specifying the path to the collection.

The Depot [Manh90], developed at the
National Institute of Standards and Technology
(NIST), splits applications into different collections;
however, no integration is done. To access files in a
collection, the user must be aware of this separation
and have a very long list of items on his path. We
considered this approach to be too cumbersome in
the Andrew environment.

Many problems had been encountered when
making changes to the search paths of over 10,000
users of our system, many of whom access our
filesystem from departmental computing facilities
where we do not have administrative access. These
departments wish to import a single directory hierar-
chy to their machines, such as /usr/local, in order to
use our software. It is convenient for there to be a
single path to all software in that hierarchy, i.e.
/usr/local/bin. While it is possible to have
configuration files which all users access to set the
paths, it is difficult to keep those files up to date and
to ensure users in other departments will use these
centrally maintained site configuration files.
Integration

Not only is it necessary to maintain indepen-
dent collections for the sake of administrative con-
venience, it is also important to unify the collections
into a single directory hierarchy. This helps the users
understand the environment as they do not have to
look in many different places for system software.
This provides, as well, a way for applications to
share common directories.

Many applications need to share directories
where common files are kept. Index files are often
kept that must be updated whenever any files change
in these directories. Two common examples of this

are: X11 fonts and man pages. With total separa-
tion, it becomes increasingly difficult to seamlessly
integrate the environment.

Maintaining independent collections does not,
however, address the problem of two applications
installing binaries with the same name -- path
conflicts and ordering problems still remain.

These problems can be addressed by integrating
the independent collections into a common directory
hierarchy and forcing conflict resolution.
Mobility

The most obvious reason for wanting to
efficiently move software in and out of environments
is for testing. If environments can be created without
regard to the actual location of the collections,
software can be tested by creating a duplicate desti-
nation environment. It should be possible to generate
a software environment that is identical to the
current released environment, with the exception of
the collection to be tested. If major problems were
uncovered, it should be simple to restore the old
environment quickly.

Distributed filesystems illustrate the concept of
mobility. Collections should be able to move
between the remote filesystem and the local disk of
the client workstation. Collections on the local disk
should be updated when new versions come out as
transparently as possible. Rarely used applications
may be stored on the remote filesystem, thus con-
serving local disk space. Commonly used or impor-
tant applications may be stored on the local disk,
thereby increasing access speed and availability.
Regardless, the actual location of the software
should be transparent to the end user.

While other systems, such as Xhier [Sell91],
have recognized the need for independence and
integration, no package that we examined addressed
the issue of mobility. Most provide only one
environment, for example, Xhier’s /software and
NIST’s Depot’s /depot. Ideally, multiple environ-
ments would be possible. We have found it desirable
to have an environment for fully supported software,
/usr/local, and another for "unsupported but useful"
software, /usr/contributed. Moreover, it should be
possible to easily move collections from
/usr/contributed to /usr/local and vice versa.
Simplicity

Paul Anderson [Ande91] described a method of
tracking software by tagging files in each collection
with a unique UNIX userid (uid). This approach
satisfied the independence, integration, and, to an
extent, the mobility requirements. However, the pro-
cess has a good deal of complexity, since developers
are required to do extra work to utilize the system.
Additional tools are required to track and maintain
the collections. Furthermore, in a decentralized dis-
tributed environment, password files must remain
homogeneous across all machines.

152 1992 LISA VI – October 19-23, 1992 – Long Beach, CA



Alternatively, simplicity and understandability
could be maintained by having each collection
imported into the software environment by using its
own directory hierarchy. For example, a file placed
in the bin directory of a collection should appear in
the bin directory of the environment. The software
installer should only need to determine the desired
directory hierarchy. When the collection appears in
the environment it will reflect that hierarchy. The
environment maintainer should only need to decide
which collections to integrate into the environment
and how to resolve any conflicts, or when two col-
lections try to install the same file in the same loca-
tion.

Additionally, the system can be kept simple by
not incorporating the distribution mechanism into the
program. For example, a distributed filesystem, such
as AFS1 [Saty85], or standard software distribution
tools such as rdist and SUP [Shaf88] may be
used. Distribution may become important for certain
classes of machines, such as laptops, and other com-
puters connected by slow or unreliable network con-
nections, but any distribution solution should still be
external.

/usr/local

lib

man1

manbin

prog3 prog1 prog3

prog2.1 prog3.1prog1.1

prog2

prog3.datprog3.cf prog3.idx

Figure 1: Simple /usr/local Environment

Implementation

Depot creates a system which requires rela-
tively little work to setup and maintain multiple
environments, to easily allow software to be quickly
installed and backed out, and to allow individual
workstations to be customized. This is done in a
manner that minimizes the overall complexity of
maintaining large software environments. Depot
achieves the goals of independence, integration,
mobility and simplicity. The system is implemented
by integrating multiple independent collections into a
single directory hierarchy and allowing specific cus-
tomizations via configuration files.

1The Andrew Filesystem (AFS) is a scalable distributed
filesystem available from the Transarc Corporation

With each invocation, depot processes a sin-
gle software environment. The software environment
starts with a specified directory hierarchy and
encompasses everything within it, including sub-
directories. Figure 1 shows a simple /usr/local
environment.

Depot defines the environment as the union of
a set of software collections. Figure 2 shows a way
collections can be stored in the depot framework.
In the environment, the depot directory is special.
This directory stores the database and configuration
files and, in this case, stores the collections.

/usr/local

prog1 prog3

prog3.1

prog2

prog3.dat prog3.cfprog3.idx

depot

col1

man libbin bin

prog2.1prog1.1

man1

man

man1

col2

prog3

Figure 2: Collections

The environment is customized through a set of
configuration options. These options determine
which collections will be integrated into the environ-
ment and how they will be integrated.

Collections can be integrated into an environ-
ment in several ways:
� By listing specific collections and the paths to

their location
� By providing search paths where the first

instance of each collection within the path
will be used

� By placing the collections in the depot direc-
tory of the environment, as shown in figure 2

� Or by using a combination of these methods

Before integrating the collections into an
environment, depot verifies that the environment is
consistent. Files in the in the environment that do
not belong to any collection or are not marked as
special files are deleted. Depot will then check to
see if any of the collections on its paths have been
changed, added or deleted. All the new collections
will be added to the environment, all removed col-
lections will be deleted, and any necessary changes
for modified collections will be made.

As depot’s last action, other binaries can be
run if a specified collection changes. This addresses
the issue where special files need to be generated.

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 153



For example, often multiple collections install files
into a common directory. Index files are often kept
of the contents of these directory, such as fonts.dir
in the X11 font directories. Future versions of
depot will have configuration options to run the
commands whenever the directory structure changes.

/usr/local

prog3

prog3.datprog3.cf prog3.idx

bin

prog2

man1

man
depot

col1 col2

lib

prog3

bin

prog1prog2

bin

prog3.1

man1

man

man1

man

prog2.1 prog1.1

prog1 prog3

prog1.1 prog2.1 prog3.1

lib

Figure 3: Symbolic Link Environment

In the integration process, there is the chance
that files, from different collections, will export to
the same place. For example, if two collections both
have the file bin/foo, then a conflict has occurred
between the two collections. Depot will exit at this
time. To resolve the conflict, the environment main-
tainer can specify that one collection is to override
the other. Alternatively, the environment maintainer
may request the collection maintainer to move files
or directory hierarchies by changing the collections
or by using collection specific configuration files.

There are two ways a collection can be
integrated: copying or linking. For collections that
are linked, symbolic links are made from the
environment to their location in the collections
specific directory. To reduce the overhead of the
links, they are made at the directory level wherever
possible. With the copy option, every file and direc-
tory is copied into the target environment.

In earlier versions, depot was only able to
operate at the collection level. There was no way to
copy or link individual files or directories; the entire
collection was either copied or linked. This strict
separation, with no single file operations, proved to
be too restricting. Target specific options now permit
individual files or directories to be copied, linked,

deleted or ignored, regardless of the collection of
origin. For example, several collections may install
fonts into the lib/X11/fonts directory, and the
environment maintainer may wish them to always be
copied, regardless of the collection they came from.
On the other hand, the environment maintainer may
choose to link all the files integrated into the man or
doc directories to conserve space. Since these
options work only by changing the behavior when a
file is mapped out of a collection into the target
directory, and they do not modify the resulting struc-
ture, the sanctity of the collection is maintained, and
a great deal of flexibility is achieved for the environ-
ment maintainer.

Figure 3 presents an environment integrated by
using symbolic links. This environment is generated
by depot from the collections in Figure 2 and
would present the same structure, to the user, as the
one shown in Figure 1. In this case, the environment
was generated by symbolic links which are
represented by the shaded objects. The arrows point
to the actual location of the files or directories.

When creating an environment with symbolic
links depot performs link optimization in order to
link at the highest possible level of the collection
hierarchy. This reduces the number of symbolic
links depot must make. Figure 3 shows this pro-
cess. Since the lib directory only exists in col2,
depot links /usr/local/lib directly to the lib direc-
tory in the col2 collection. If another collection
later introduces a file into a directory which has
been optimized at a higher level, the link will be

154 1992 LISA VI – October 19-23, 1992 – Long Beach, CA



removed and all the files at the lower level will be
linked in. It will again attempt to link any subdirec-
tories of the previously optimized directory new
links are made. Many collections (e.g., the
Framemaker publishing package), have hierarchies
of thousands of files into which it is unlikely any
other application would ever introduce files.

In our environment, the software environment
is first integrated on a shared filesystem. Most
workstations may just access the environment in that
manner. However, workstations with more local
storage may move the environment to their local
disk. This creates the situation where the client
should be updated whenever software is updated in
the shared filesystem. For example, a symbolic link
could exist from the local disk to a file in a collec-
tion on the shared filesystem. If, the collection main-
tainer changes the collection by removing the file,
there will be the case where a symbolic link is
pointing at a nonexistent file.

To resolve the consistency problems, the client
workstation must either run depot immediately, or
there must be a way for the local workstation
environment to remain consistent and fully func-
tional until a scheduled run of depot occurs.
Requiring all participating machines to run depot
simultaneously in a large workstation installation
neither feasible nor practical. To allow workstations
to run depot on their own time frame, we added
the concept of depot version numbers. When a
new version of a software package is released to the
environment, it is mounted with a higher version
number. The highest version is selected and
integrated into the environment. A reasonable
number of versions are kept so no collections will be
erased before a workstation has an opportunity to run
depot. Thus, functionality and consistency of the
environment is preserved.

By integrating multiple independent collections
into a single environment, depot achieves indepen-
dence and integration. The search paths, version
numbers, and different updating strategies provide
mobility by allowing the integration of new or dif-
ferent versions of a software package from different
locations. Finally, the mirroring of directory hierar-
chies and simple configuration options are easy for
administrators and software developers to understand
and use, thereby achieving the goal of simplicity.

Limitations

Depot only operates inside a single environ-
ment at one time. Software managed in /usr/local
cannot be moved by depot outside of /usr/local.
Software or files that need to be copied into the
operating system areas will require another program
to do so. There also lacks a mechanism to scan the
entire environment for conflicts. This makes building
the environment for the very first time a somewhat
longer and more tedious task.

Currently, depot is somewhat inefficient at
dealing with very large environments. The time to
search its databases and to stat (2) source directories
for changed collections increases undesirable as the
environment grows. Some performance enhance-
ments have been made by introducing code specific
to AFS volumes2 [Side86], but these have not been
sufficient. A network server or hint files, containing
modification dates of collections and information
about their tree structure, may be needed. A com-
plete rewrite of the database and customization han-
dling routines is planned.

Some additional tools are required for distribu-
tion and for detailed tracking of software in the
environments. Colyer, et. al., [Coly92] provides an
overview of the tools used with Depot to manage
the Andrew Software Environment. Mark Held
[Held92] provides a more detailed explanation of the
environment. Also, as a result of our AFS environ-
ment, the issue of architecture differences is not
addressed by depot. This issue must be handled
by the distribution system.

We are planning for depot to replace pack-
age [Youn85], our current host configuration tool,
and make depot a workstation manager. The
environment would be the operating system of the
workstation. Each operating system release would be
a collection where minor release levels would over-
ride the major release. Layered operating system
products would also be collections in the environ-
ment. In addition to this, a hierarchy of overrides are
also required where "Andrew" changes would over-
ride operating system defaults. Further, departmental
changes would override "Andrew" changes and
finally local workstation changes, with the highest
priority, would override all other changes.

Conclusion

In the Andrew environment, where depot was
developed, it would be unthinkable to return to the
situation such a tool was available. Installations were
lengthy, error prone processes. Often the installation
of a new application would break previous applica-
tions. There was no smooth way to restore the
environment to a previous state. Even though
numerous man hours were put into maintaining the
environment, the system was essentially in a state of
anarchy.

Today, even with multiple environments,
software can be easily installed and removed from
the system. Individual workstations can be custom-
ized to achieve a degree of network independence
with minimal effort by the central staff or worksta-
tions owners. Much of depot’s success can be attri-
buted to the four factors discussed earlier:

2Volumes are containers of UNIX filesystems, similar to
disk partitions. They are the administrative unit of AFS.

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 155



independence, integration, mobility and simplicity.
The concept of combining independence and integra-
tion provided the manageability we needed without
sacrificing the consistency that users demand. Mobil-
ity gives us flexibility in configuration and testing.
Finally, the simplicity has made it popular with
developers and allows us to integrate depot with
other tools, rather than trying to make depot a
"kitchen sink" tool. Depot has proved to be a flexi-
ble mechanism for maintaining our software environ-
ment.

Acknowledgments

Without the considerable work done by a large
number of people depot would not have been pos-
sible. Many more people were influential in the crea-
tion of depot and the software management pro-
cedures along side it.

In 1988, depot was born during a set of
software management brain storming sessions
attended by Wallace Colyer, Mark Held, Ted
McCabe, and David VanRyzin. Each member of this
group contributed to the creation of depot. There
were many useful insights gained from previous
software management strategies developed in con-
junction with the Information Technology Center
(ITC) and groups within the Academic Services divi-
sion at Carnegie Mellon University. Mike Accetta
and other members of the School of Computer Sci-
ence were very helpful during our initial consulta-
tions in explaining the strengths and weaknesses of
their /usr/misc software management system.
/usr/misc provided the initial ideas for the creation
of depot. The original prototype was written in
perl [Wall91] by Wallace Colyer in 1989. It has
since been rewritten in C by was written by Sohan
C. Ramakrishna-Pillai.

We would like to thank Terilyn Gillespie and
Dawn Neuhart for helping to, once and for all, finish
this paper.

A final set of thanks goes to Mark Held, who is
leading the effort of maintaining our local and third
party software. He also undertook the enormous pro-
ject to migrate all our software into the new archi-
tecture and has produced an excellent software
development environment based on the framework
provided by depot.

Availability

Depot is available via anonymous ftp from
export.acs.cmu.edu [128.2.35.66] in /pub/depot.
Depot is also available via AFS in
/afs/andrew.cmu.edu/system/archive/cmu/depot.

Any questions about depot can be sent to
depot+@andrew.cmu.edu . Depot does not require
AFS.

References

[Ande91] Anderson, Paul. "Managing Program
Binaries In a Heterogeneous UNIX Network."
LISA V Proceedings. 1991. pp. 1-9.

[Coly92] Colyer, Wallace; Held, Mark; Markley,
David, and Wong, Walter. "Software Manage-
ment in the Andrew System." AFS User’s
Group Proceedings. June 1992.

[Held92] Held, Mark, and Neuhart, Dawn. Software
Management in the Andrew Distributed UNIX
System at CMU. Computing Services, Carnegie
Mellon University. 1992.

[Manh90] Manheimer, Kenneth, Warsaw, Barry,
Clark Stephen, and Rowe, Walter. "The Depot:
A Framework for Sharing Software Installation
Across Organizational and UNIX Platform Boun-
daries." LISA IV Proceedings. 1990. pp. 37-
46.

[Saty85] Satyanarayanan, M.; Howard, J. H; Nichols,
D. A.; Sidebotham N., and Spector A. Z. "The
ITC Distributed File System: Principles and
Design." Proceedings of the 10th ACM Sympo-
sium on Operating System Principles. 1985.

[Sell91] Sellens, John. "Software Maintenance in a
Campus Environment: The Xhier Approach."
LISA V Proceedings. 1991. pp. 21-44.

[Shaf89] Shafer, Stephen, and Thompson, Mary. The
SUP Software Upgrade Protocol. Carnegie
Mellon University, School of Computer Sci-
ence. 1988. Available from mach.cs.cmu.edu in
/usr/mach/public/doc/sup.ps .

[Side86] Sidebotham, R. N. "Volumes: The Andrew
File System Data Structuring Primitive."
Technical Report CMU-ITC-053. Information
Technology Center, Carnegie Mellon Univer-
sity. 1986.

[Wall91] Wall, Larry, and Schwartz, Randal L. Pro-
gramming perl. O’Reilly and Associates, Inc.
1991.

[Youn85] Yount, Russell. Package. Academic Ser-
vices. Carnegie Mellon University. 1985.

Author Information

Wallace Colyer is the Andrew Systems
Manager at Carnegie Mellon University. He began
as a User Consultant specializing in workstation
administration issues. Time and a variety of depart-
mental reorganizations found him in charge of the
entire system. Send Email to wally+@cmu.edu .

Walter Wong obtained a B.S. in Cognitive Sci-
ence at Carnegie Mellon University in 1991. By that
time, however, he was already involved with system
administration issues in a distributed computing
environment. Rather than basking in the glory of a
fine graduate school in a small college town, Walter
stayed at Carnegie Mellon to be a system adminis-
trator and programmer for the Andrew Systems
Group. Send Email to Walter.C.Wong@cmu.edu .

156 1992 LISA VI – October 19-23, 1992 – Long Beach, CA



Both authors may be reached via the postal sys-
tem at:

Computing Services
Carnegie Mellon University
4910 Forbes Avenue
Pittsburgh, PA 15213-3891

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 157



Examples

The following example is a simple use of depot to integrate two collections into an environment called
/usr/test. A directory called depot is created under /usr/test which houses the configuration files and collec-
tions. There are two collections col1 and col2. Each has its own directory hierarchy which is shown below.

/usr/test/depot/col1
bin/prog1
bin/prog2
man/man1/prog1.1
lib/libprog1.a

/usr/test/depot/col2
bin/prog3
man/man1/prog3.1
lib/libprog3.a

A simple configuration file is created which tells depot to use the modification times to see if a file has
changed.

% cat /usr/test/depot/custom.depot
usemodtimes: true

Running depot will integrate these two collection, col1 and col2, with a common man, lib, and bin direc-
tory.

% cd /usr/test/depot
% depot -B [this builds the initial database]
% depot -va [-v makes depot verbose; -a updates all collections]
DIRECTORY ..
MKDIR ../man
MKDIR ../man/man1
LINK depot/col2/man/man1/prog3.1 ../man/man1/prog3.1
LINK depot/col1/man/man1/prog1.1 ../man/man1/prog1.1
MKDIR ../lib
LINK depot/col2/lib/libprog3.a ../lib/libprog3.a
LINK depot/col1/lib/libprog1.a ../lib/libprog1.a
MKDIR ../bin
LINK depot/col2/bin/prog3 ../bin/prog3
LINK depot/col1/bin/prog2 ../bin/prog2
LINK depot/col1/bin/prog1 ../bin/prog1
Backing up old database .. done
Moving in new database .. done

The following is the directory hierarchy, reflecting the union of col1 and col2, created under /usr/test.

/usr/test
bin

prog1
prog2
prog3

lib
libprog1.a
libprog3.a

man/man1
prog1.1
prog3.1

By adding the mapcommand line to the configuration file, the actual files are copied out of the collection
and into the /usr/test hierarchy.

% cat custom.depot
usemodtimes: true

158 1992 LISA VI – October 19-23, 1992 – Long Beach, CA



*.mapcommand: copy
% depot -va
DIRECTORY ..
DIRECTORY ../man
DIRECTORY ../man/man1
REMOVE ../man/man1/prog3.1
COPY depot/col2/man/man1/prog3.1 ../man/man1/prog3.1.NEW
RENAME ../man/man1/prog3.1.NEW ../man/man1/prog3.1
UTIMES ../man/man1/prog3.1 Wed Aug 19 10:52:11 1992
REMOVE ../man/man1/prog1.1
COPY depot/col1/man/man1/prog1.1 ../man/man1/prog1.1.NEW
RENAME ../man/man1/prog1.1.NEW ../man/man1/prog1.1
UTIMES ../man/man1/prog1.1 Wed Aug 19 10:51:19 1992
DIRECTORY ../bin
REMOVE ../bin/prog3
COPY depot/col2/bin/prog3 ../bin/prog3.NEW
RENAME ../bin/prog3.NEW ../bin/prog3
UTIMES ../bin/prog3 Wed Aug 19 10:51:56 1992
REMOVE ../bin/prog1
COPY depot/col1/bin/prog1 ../bin/prog1.NEW
RENAME ../bin/prog1.NEW ../bin/prog1
UTIMES ../bin/prog1 Wed Aug 19 10:51:03 1992
REMOVE ../bin/prog2
COPY depot/col1/bin/prog2 ../bin/prog2.NEW
RENAME ../bin/prog2.NEW ../bin/prog2
UTIMES ../bin/prog2 Wed Aug 19 10:51:03 1992
DIRECTORY ../lib
REMOVE ../lib/libprog3.a
COPY depot/col2/lib/libprog3.a ../lib/libprog3.a.NEW
RENAME ../lib/libprog3.a.NEW ../lib/libprog3.a
UTIMES ../lib/libprog3.a Wed Aug 19 10:52:21 1992
REMOVE ../lib/libprog1.a
COPY depot/col1/lib/libprog1.a ../lib/libprog1.a.NEW
RENAME ../lib/libprog1.a.NEW ../lib/libprog1.a
UTIMES ../lib/libprog1.a Wed Aug 19 10:51:29 1992
Backing up old database .. done
Moving in new database .. done

If a new file is added to a collection, it will be integrated into the environment by running depot again.
Thus, the file /usr/test/depot/col2/bin/prog4 is added to the collection col2.

% depot -va
DIRECTORY ..
DIRECTORY ../bin
COPY depot/col2/bin/prog4 ../bin/prog4.NEW
RENAME ../bin/prog4.NEW ../bin/prog4
UTIMES ../bin/prog4 Wed Aug 19 10:59:10 1992
Backing up old database .. done
Moving in new database .. done

A new environment, /usr/test2, can be created that builds upon the collections in the /usr/test environment.
Under the depot directory in /usr/test2 we have a newer versions of col2 and a new collection called col3.

/usr/test2/depot/col2
bin/prog3
bin/prog4
man/man1/prog3.1
lib/libprog3.a

/usr/test2/depot/col3
bin/prog5
lib/prog5/fonts/prog5.font

1992 LISA VI – October 19-23, 1992 – Long Beach, CA 159



% cd /usr/test2/depot
% cat custom.depot
usemodtimes: true
*.searchpath: /usr/test2/depot,/usr/test/depot
% depot -B
% depot -va
DIRECTORY ..
MKDIR ../man
MKDIR ../man/man1
LINK /usr/test2/depot/col2/man/man1/prog3.1 ../man/man1/prog3.1
LINK /usr/test/depot/col1/man/man1/prog1.1 ../man/man1/prog1.1
MKDIR ../lib
LINK /usr/test2/depot/col2/lib/libprog3.a ../lib/libprog3.a
LINK /usr/test/depot/col1/lib/libprog1.a ../lib/libprog1.a
MKDIR ../bin
LINK /usr/test2/depot/col3/bin/prog5 ../bin/prog5
LINK /usr/test/depot/col1/bin/prog2 ../bin/prog2
LINK /usr/test/depot/col1/bin/prog1 ../bin/prog1
LINK /usr/test2/depot/col2/bin/prog4 ../bin/prog4
LINK /usr/test2/depot/col2/bin/prog3 ../bin/prog3
LINK /usr/test2/depot/lib/prog5 ../prog5
Backing up old database .. done
Moving in new database .. done

This creates a new environment, test2, by using col1 from the test environment along with the newer ver-
sion of col2 and a new collection, col3, from the test2 environment. For lib/prog5, link optimization was accom-
plished. Since the only collection installing into the lib/prog5 directory was col3 and the entire directory was
being imported, the symbolic link was made at the highest point in the tree.

160 1992 LISA VI – October 19-23, 1992 – Long Beach, CA


